The Science of Dates and Rates

Geochronology and thermochronology combine geochemistry, nuclear reactions, and technology to probe the history and dynamics of Earth and planetary processes.

Geology is, in essence, the history of the Earth, and any history depends on dates and rates. Geochronology supplies these. A new book, Geochronology and Thermochronology, recently published by the American Geophysical Union, presents the current state of this science including its concepts, approaches, methods, and applications. Here, the authors answer some questions about the science of geochronology and its relevance, and describe how this field has evolved. Read more.

Viewpoint: Resonant Ionization Spectroscopy Technique Becomes Tabletop Friendly

A modified version of a spectroscopic technique used at large-scale radioactive-ion-beam facilities could be used in tabletop experiments.

Optical spectroscopy provides an important window into the atomic and subatomic world. It can be applied to determine nuclear, atomic, and molecular structures, to test fundamental physics theories, and to track radioactive isotopes for environmental, geological, and medical applications. Recently, researchers have developed spectroscopic methods with exquisite precision and sensitivity, which allow them to study rare or short-lived isotopes at the edge of nuclear stability. Read more.

Ancient Bones Reveal Ancient Diet, Lifestyle

Scientists learned recently that fish was the main source of protein for people in southern Scandinavia many thousands of years ago. They also ate other animals that live in the water. The findings come from Lund University in Sweden. Scientists there tested ancient human bones from more than 80 individuals. Read more.

Earth’s First Nuclear Reactor Is 1.7 Billion Years Old And Was Made Naturally

If you were hunting for alien intelligence, looking for a surefire signature from across the Universe of their activity, you’d have a few options. You could look for an intelligent radio broadcast, like the type humans began emitting in the 20th century. You could look for examples of planet-wide modifications, like human civilization displays when you view Earth at a high-enough resolution. You could look for artificial illumination at night, like our cities, towns, and fisheries display, visible from space.

Or, you might look for a technological achievement, like the creation of particles like antineutrinos in a nuclear reactor. After all, that’s how we first detected neutrinos (or antineutrinos) on Earth. But if we took that last option, we might fool ourselves. Earth created a nuclear reactor, naturally, long before humans ever existed. Read more.