| Isotope | Z(p) | N(n) | Atomic Mass | Natural Abundance | Enrichment Level | Chemical Form |
|---------|------|------|-------------|-------------------|------------------|---------------|
| Sm-144  | 62   | 82   | 143.911996  | 3.10%             | 88.00-93.00%     | Oxide         |
| Sm-147  | 62   | 85   | 146.914894  | 15.0%             | 94.00-96.50%     | Oxide         |
| Sm-148  | 62   | 86   | 147.914818  | 11.30%            | 91.00-96.50%     | Oxide         |
| Sm-149  | 62   | 87   | 148.917180  | 13.80%            | >94.00%          | Oxide         |
| Sm-150  | 62   | 88   | 149.917272  | 7.40%             | >94.00%          | Oxide         |
| Sm-152  | 62   | 90   | 151.919729  | 26.70%            | ≥98.40%          | Oxide         |
| Sm-154  | 62   | 92   | 153.922206  | 22.70%            | >98.50%          | Oxide         |

## Stable isotopes of samarium available from ISOFLEX

Sm

Samarium was discovered in 1879 by Paul-Émile Lecoq de Boisbaudran. It is named for the mineral *samarskite,* from which Lecoq de Boisbaudran isolated the new element. The mineral in turn takes its name from Vasili Samarsky-Bykhovets, the one-time chief of staff of the Russian Corps of Mining Engineers.

Samarium is a hard, brittle, yellow metal, which quickly develops an oxide film in air. Its hardness is similar to that of iron. It exhibits two crystal forms: an *alpha form*, with a rhombohedral crystal structure at ordinary temperatures, changes to the body-centered *cubic form* at 917 °C. The densities of the two forms are 7.52 g/cm<sup>3</sup> and 7.40 g/cm<sup>3</sup>, respectively. Samarium is insoluble in water and soluble in acid. It is stable in dry air at ordinary temperatures; however, it oxidizes in moist air, forming an oxide coating. The metal ignites in air at about 150 °C. It is an active reducing agent (it reduces several metal oxides to metals), and it liberates hydrogen from water. Among samarium's trivalent salts, the sesquioxide is commercially important, and the divalent compounds are primarily halides. The trivalent salts of these halogens are more stable than their divalent counterparts.

Samarium salts are used in optical glass, capacitors, thermoionic generating devices and sensitizers of phosphors. The metal is doped with calcium fluoride crystals for use in lasers. It is also used with other rare earths for carbon-arc lighting. Its alloys are used in permanent magnets.



1-415-440-4433 | USA & Canada Toll Free 1-888-399-4433 | Fax 1-415-563-4433 PO Box 29475 | San Francisco, CA 94129 USA | isoflex.com

## **Properties of Samarium**

| Name                     | Samarium                                          |  |
|--------------------------|---------------------------------------------------|--|
| Symbol                   | Sm                                                |  |
| Atomic number            | 62                                                |  |
| Atomic weight            | 150.36                                            |  |
| Standard state           | Solid at 298 °K                                   |  |
| CAS Registry ID          | 7440-19-9                                         |  |
| Group in periodic table  | N/A                                               |  |
| Group name               | Lanthanoid                                        |  |
| Period in periodic table | 6 (Lanthanoid)                                    |  |
| Block in periodic table  | f-block                                           |  |
| Color                    | Silvery white                                     |  |
| Classification           | Metallic                                          |  |
| Melting point            | 1074 °C                                           |  |
| Boiling point            | 1791 °C                                           |  |
| Vaporization point       | 1791 °C                                           |  |
| Thermal conductivity     | 13.30 W/(m·K) at 298.2 °K                         |  |
| Electrical resistivity   | 94.00 μΩ·cm at 25 °C                              |  |
| Electronegativity        | 1.2                                               |  |
| Specific heat            | 0.18 J/g mol at 20 °C                             |  |
| Heat of vaporization     | 175.00 kJ·mol⁻¹ at 1791 °C                        |  |
| Heat of fusion           | 8.90 kJ·mol⁻¹                                     |  |
| Density of liquid        | 7.16 g/cm <sup>3</sup> at 1074 °C                 |  |
| Density of solid         | 7.52 g/cm <sup>3</sup>                            |  |
| Electron configuration   | [Xe]4f <sup>6</sup> 6s <sup>2</sup>               |  |
| Atomic radius            | 1.804 Å                                           |  |
| Ionic radius             | Sm <sup>3+</sup> : 1.08 Å (coordination number 8) |  |
| Oxidation states         | +2, +3                                            |  |



1-415-440-4433 | USA & Canada Toll Free 1-888-399-4433 | Fax 1-415-563-4433 PO Box 29475 | San Francisco, CA 94129 USA | isoflex.com